23rd World Gas Conference

UNDERGROUND GAS STORAGE IN AN
UNDERSATURATED OIL FIELD IN ARGENTINA

Amsterdam, June 7th – 2006

J.J. Rodríguez - J.M. Morisseau - P. Santistevan
PRESENTATION SCOPE

PART 1

• LOCATION
• PURPOSES OF THE UGS PROJECT
• GEOLOGY & RESERVOIR
• SURFACE FACILITIES

PART 2

• PILOT PROJECT GOALS
• COMPRESSION SYSTEM
• GAS BUBBLE EVOLUTION
• PRELIMINARY RESULTS
• QUALITY, SAFETY & ENVIRONMENTAL PROTECTION

CONCLUSIONS
REFERENCES

(1) Depleted gas field
(2) Depleted oil field
CONNECTION TO MAIN AND SECONDARY GAS PIPELINES

Neuquina Basin to Buenos Aires

Mendoza

Lunlunta Carrizal UGS

Winter

Summer

Centro Oeste Trunk Gas Pipeline (TGN)

Ecogas Pipeline

Neuquina Basin

to Buenos Aires

to Chile
✓ To comply with Repsol YPF obligations under the natural gas sale contracts in the region of Mendoza

✓ To improve the oil exploitation in Lunlunta Carrizal field (secondary recovery)

✓ To optimize natural gas and oil production in the fields located in Neuquina Basin
GEOLOGY & RESERVOIR

✓ STRUCTURE: Lunlunta Carrizal structure is an anticline with two apexes separated by a structural low

✓ CAPROCK: Claystones and volcanic rocks from Punta de las Bardas formation

✓ RESERVOIR: includes sandstones and conglomerate (Fluvial deposit)

Depth: 2,400 meters below g.l.
Porosity: 18 %
Permeability: 70 mD
Original Pressure: 230 Bar
Current Pressure: 100 Bar
GAS BUBBLE AREA
UGS WELLS

Injection / Withdrawal well

Gas monitoring well

Aquifer monitoring well
SURFACE FACILITIES
PART 2

- PILOT PROJECT GOALS
- COMPRESSION SYSTEM
- GAS BUBBLE EVOLUTION
- PRELIMINARY RESULTS
- QUALITY, SAFETY & ENVIRONMENTAL PROTECTION
Working gas: 120 M Std. m3

Cushion gas: 150 M Std. m3

Maximum pressure: 210 Bar

Gas injection flow rate: 0,30 / 0,90 M Std. m3/d

Maximum gas withdrawal: 1,0 M Std. m3/d

Gas Injection wells (available): 12

Gas Monitoring wells: 12
LUNLUNTA CARRIZAL GAS PLANT
GAS / LIQUIDS SEPARATORS & FILTERS
UNDERGROUND GAS STORAGE
IN LUNLUNTA CARRIZAL OIL FIELD

PRESSURE VARIATIONS IN THE MONITORING WELLS vs GAS INJECTION FLOWRATE
GAS BUBBLE EVOLUTION

NOV - 2005
Cumul. Gas Inject: 6,920,460 m3

DEC - 2005
Cumul. Gas Inject: 16,845,160 m3

MAR - 2006
Cumul. Gas Inject: 41,027,950 m3

JAN - 2006
Cumul. Gas Inject: 26,715,260 m3

Gas Injection wells used: 5
Gas Monitoring wells: 12
Gas inj. flow rate (avge) : 318,000 m3/d
The gas injectivity of the wells matches previous estimates:
- Vertical wells: 50,000 std. m3/d per well
- Horizontal well: 150,000 std. m3/d

As expected, gas injection was not found to impact the aquifers located above the cap rock, which is clearly positive given the large number of wells drilled in the area.

The major mobility of the gas injected is registered in zones with high permeability of the reservoir, which are at the same time, areas of high water saturation.

The minimum gas saturation (Sg), necessary for a continuous gas bubble is about 7% of the porous volume.

Considering a reservoir thickness of 10 meters and porosity of 18%, the gas volume necessary (Sg: 7%) is about 40 Mm3 (std), at pressure of 100 Bar.

We estimate that 15 m on the top of the reservoir, is enough for developing a gas bubble of about 100 M Std m3 (Sg: 15%).
Repsol YPF successfully completed (2004) the certification of an Integrated Management System (IMS), including the following standards:

- Quality (ISO 9001:2000)
- Environmental Protection (ISO 14000:1996)
- Safety and Work Health (OHSAS 18001:1999)

The aspects controled by the IMS are:

- Water quality control in higher aquifers, every 6 months.
- Casing integrity in oil production Wells located in the area of gas bubble influence.
- Casing protection in Gas Injection Wells, against high pressure.
- Gas bubble control at spill points
- Escape gases composition control at the Compression Plant, Waste Disposal, etc
- On-line gas control (Scada): Auditable measurement system
The Lunlunta Carrizal Project presents a major challenge for Repsol YPF as it involves developing a gas bubble in an undersaturated oil reservoir composed of low-permeability sandstones.

After injecting more than 40 Million Std. m3 of gas into the reservoir, the gas bubble is in progress on top of the structure.

The IMS in place at Lunlunta Carrizal Storage facility has provided us with effective control tools: no accidents since 2003, accurate gas balancing and a precise monitoring System of the gas bubble and upper aquifers.

Gas production tests will be performed during Jun/Aug-2006, in order to assess recoverable gas volumes and productivity indexes.